3.443 \(\int \frac{(a+a \cos (c+d x))^2 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=172 \[ \frac{4 a^2 (2 A+3 B+2 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a^2 (5 A+3 B-C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 (4 A+3 B) \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \sqrt{\cos (c+d x)}}-\frac{4 a^2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(-4*a^2*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(2*A + 3*B + 2*C)*EllipticF[(c + d*x)/2, 2])/(3*d) - (2*
a^2*(5*A + 3*B - C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*A*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Co
s[c + d*x]^(3/2)) + (2*(4*A + 3*B)*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.471599, antiderivative size = 172, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.163, Rules used = {3043, 2975, 2968, 3023, 2748, 2641, 2639} \[ \frac{4 a^2 (2 A+3 B+2 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a^2 (5 A+3 B-C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 (4 A+3 B) \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{3 d \sqrt{\cos (c+d x)}}-\frac{4 a^2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

(-4*a^2*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(2*A + 3*B + 2*C)*EllipticF[(c + d*x)/2, 2])/(3*d) - (2*
a^2*(5*A + 3*B - C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*A*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Co
s[c + d*x]^(3/2)) + (2*(4*A + 3*B)*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]])

Rule 3043

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C -
 B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \int \frac{(a+a \cos (c+d x))^2 \left (\frac{1}{2} a (4 A+3 B)-\frac{3}{2} a (A-C) \cos (c+d x)\right )}{\cos ^{\frac{3}{2}}(c+d x)} \, dx}{3 a}\\ &=\frac{2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 (4 A+3 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{4 \int \frac{(a+a \cos (c+d x)) \left (\frac{3}{4} a^2 (3 A+3 B+C)-\frac{3}{4} a^2 (5 A+3 B-C) \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx}{3 a}\\ &=\frac{2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 (4 A+3 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{4 \int \frac{\frac{3}{4} a^3 (3 A+3 B+C)+\left (-\frac{3}{4} a^3 (5 A+3 B-C)+\frac{3}{4} a^3 (3 A+3 B+C)\right ) \cos (c+d x)-\frac{3}{4} a^3 (5 A+3 B-C) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{3 a}\\ &=-\frac{2 a^2 (5 A+3 B-C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 (4 A+3 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}+\frac{8 \int \frac{\frac{3}{4} a^3 (2 A+3 B+2 C)-\frac{9}{4} a^3 (A-C) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{9 a}\\ &=-\frac{2 a^2 (5 A+3 B-C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 (4 A+3 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}-\left (2 a^2 (A-C)\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (2 a^2 (2 A+3 B+2 C)\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{4 a^2 (A-C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a^2 (2 A+3 B+2 C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a^2 (5 A+3 B-C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 (4 A+3 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.62385, size = 1025, normalized size = 5.96 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*(-((-4*A - B + 2*C + B*Cos[2*c] + 2*C*Cos[2*c])
*Csc[c]*Sec[c])/(4*d) + (C*Cos[d*x]*Sin[c])/(6*d) + (C*Cos[c]*Sin[d*x])/(6*d) + (A*Sec[c]*Sec[c + d*x]^2*Sin[d
*x])/(6*d) + (Sec[c]*Sec[c + d*x]*(A*Sin[c] + 6*A*Sin[d*x] + 3*B*Sin[d*x]))/(6*d)) - (2*A*(a + a*Cos[c + d*x])
^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - Arc
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*
Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (B*(a + a*Cos[c + d*x])^2*Csc[c]*Hypergeometri
cPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - S
in[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcT
an[Cot[c]]]])/(d*Sqrt[1 + Cot[c]^2]) - (2*C*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4},
 Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]
]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt
[1 + Cot[c]^2]) + (A*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4
}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1
+ Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - (
(Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^
2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d) - (C*(a + a*Cos[c
 + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*S
in[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt
[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c]
)/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[C
os[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 0.486, size = 800, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x)

[Out]

4/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(4*C*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+6*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+4*A*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-12*A*cos
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+6*B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti
cF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-6*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-6*C*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2
+4*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1
/2*d*x+1/2*c)^2-4*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+7*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*B*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*cos(1/2*d*x+1/2*c)*s
in(1/2*d*x+1/2*c)^2+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/
2*c),2^(1/2))-2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2
^(1/2))+C*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos
(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C a^{2} \cos \left (d x + c\right )^{4} +{\left (B + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} +{\left (A + 2 \, B + C\right )} a^{2} \cos \left (d x + c\right )^{2} +{\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + A a^{2}}{\cos \left (d x + c\right )^{\frac{5}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((C*a^2*cos(d*x + c)^4 + (B + 2*C)*a^2*cos(d*x + c)^3 + (A + 2*B + C)*a^2*cos(d*x + c)^2 + (2*A + B)*a
^2*cos(d*x + c) + A*a^2)/cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(5/2), x)